

 [image: evolearn logo.]

Contents:

	Quick Start
	Installation

	Genetic Hyperparameter Tuning CV

	Genetic Feature Selection

	Hyperparameter Tuning
	GenesSearchCV
	Initialization

	Genes

	Evaluation

	FitnessFunction

	Selection

	RankSelection

	RouletteWheelSelection

	SteadyStateSelection

	TournamentSelection

	StochasticUniversalSampling

	BoltzmannSelection

	Mating

	MatingFunction

	Reproduction

	KPointCrossover

	Mutation

	Environment

	AdaptiveReproduction

	AdaptiveMutation

	Elitism

	Feature Selection
	GeneticFeatureSelectionCV
	Initialization

	Genes

	Evaluation

	FitnessFunction

	Selection

	RankSelection

	RouletteWheelSelection

	SteadyStateSelection

	TournamentSelection

	StochasticUniversalSampling

	BoltzmannSelection

	Mating

	MatingFunction

	Reproduction

	KPointCrossover

	Mutation

	BitStringMutation

	ExchangeMutation

	ShiftMutation

	Environment

	AdaptiveReproduction

	AdaptiveMutation

	Elitism

	Warnings
	Population Decline Warning

	Elitism Failed Warning

	Low Population Warning

	Low Population Diversity Warning

Footnotes

Quick Start

Installation

To use evolearn, first install it using pip:

(.venv) $ pip install evolearn

Genetic Hyperparameter Tuning CV

To perform hyperparameter tuning using genetic algoritm,
you need to first import other modules from

	evolearn.hyperparameter_tuning.initialization

	evolearn.hyperparameter_tuning.evaluation

	evolearn.hyperparameter_tuning.selection

	evolearn.hyperparameter_tuning.mating

	evolearn.hyperparameter_tuning.reproduction

	evolearn.hyperparameter_tuning.mutation

	evolearn.hyperparameter_tuning.environment (optional)

	evolearn.hyperparameter_tuning.genetic_hyperparameter_tuning

Although the modules from environment are optional for you to determine to
use them in your search or not, the searching might end up stopping early or not
finding the ideal results. These modules can help to prevent pre-mature convergence
and also control other hyperparameters for GA.

For example:

>>> from evolearn.hyperparameter_tuning.initialization import Genes
>>> from evolearn.hyperparameter_tuning.evaluation import FitnessFunction
>>> from evolearn.hyperparameter_tuning.selection import (RankSelection,
 RouletteWheelSelection,
 SteadyStateSelection,
 TournamentSelection,
 StochasticUniversalSampling,
 BoltzmannSelection
)
>>> from evolearn.hyperparameter_tuning.mating import MatingFunction
>>> from evolearn.hyperparameter_tuning.reproduction import (KPointCrossover,
 LinearCombinationCrossover,
 FitnessProportionateAverage
)
>>> from evolearn.hyperparameter_tuning.mutation import (Boundary,
 Shrink
)
>>> from evolearn.hyperparameter_tuning.environment import (AdaptiveReproduction,
 AdaptiveMutation,
 Elitism
)
>>> from evolearn.hyperparameter_tuning.genetic_hyperparameter_tuning import GenesSearchCV
>>> from sklearn.ensemble import RandomForestRegressor
>>> search_space_rf = {
 'max_depth':(1, 16, 'uniform'),
 'n_estimators':(100, 1000, 'uniform'),
 'criterion':('squared_error', 'absolute_error', 'poisson')
 }
>>> opt = GenesSearchCV(
 n_gen=10,
 initialization_fn=Genes(search_space=search_space_rf, pop_size=30),
 fitness_fn=FitnessFunction(
 estimator=RandomForestRegressor(n_jobs=-1),
 cv=3,
 scoring='neg_mean_absolute_error',
),
 selection_fn=StochasticUniversalSampling(.7),
 mating_fn=MatingFunction(increst_prevention=False),
 reproduction_fn=KPointCrossover(1),
 mutation_fn=Shrink(),
 adaptive_population=AdaptiveReproduction(10),
 elitism=Elitism(),
 adaptive_mutation=AdaptiveMutation()
)
>>> opt.fit(X_train, y_train)
Max Fitness: -2023.200579609583
{'max_depth': 5, 'n_estimators': 561, 'criterion': 'absolute_error'}

The choices of selection_fn, reproduction_fn, mutation_fn are
actually up to your personal preference. One can pick what they believe
are most benefit to their searching preocess.

Genetic Feature Selection

To perform feature selection using genetic algoritm,
you need to first import other modules from

	evolearn.feature_selection.initialization

	evolearn.feature_selection.evaluation

	evolearn.feature_selection.selection

	evolearn.feature_selection.mating

	evolearn.feature_selection.reproduction

	evolearn.feature_selection.mutation

	evolearn.feature_selection.environment (optional)

	evolearn.feature_selection.genetic_hyperparameter_tuning

The modules looks similar to those modules from the
GenesSearchCV section, but in fact their internal mechanisim
work slightly differently. You need to be ware of importing the
wrong modules when using genetic feature selection.

For example:

>>> from evolearn.feature_selection.initialization import Genes
>>> from evolearn.feature_selection.evaluation import FitnessFunction
>>> from evolearn.feature_selection.selection import (RankSelection,
 RouletteWheelSelection,
 SteadyStateSelection,
 TournamentSelection,
 StochasticUniversalSampling,
 BoltzmannSelection
)
>>> from evolearn.feature_selection.mating import MatingFunction
>>> from evolearn.feature_selection.reproduction import KPointCrossover
>>> from evolearn.feature_selection.mutation import (BitStringMutation,
 ExchangeMutation,
 ShiftMutation
)
>>> from evolearn.feature_selection.environment import (AdaptiveReproduction,
 AdaptiveMutation,
 Elitism
)
>>> from evolearn.feature_selection.genetic_feature_selection import GeneticFeatureSelection
>>> from sklearn.ensemble import RandomForestRegressor
>>> opt = GeneticFeatureSelection(
 n_gen=10,
 initialization_fn=Genes(pop_size=50),
 fitness_fn=FitnessFunction(
 estimator=RandomForestRegressor(n_jobs=-1),
 cv=3,
 scoring='neg_mean_absolute_error'
),
 selection_fn=RouletteWheelSelection(.7),
 mating_fn=MatingFunction(),
 reproduction_fn=KPointCrossover(k=4),
 mutation_fn=BitStringMutation(),
 adaptive_population=None,
 elitism=None,
 adaptive_mutation=None
)
>>> opt.fit(X_train, y_train)
>>> print(opt.best_fitness_)
>>> print(opt.best_params_)
-2797.7245589631652
{'age': True, 'sex': False, 'bmi': True, 'children': True, 'smoker': True, 'region': False}

Footnotes

Hyperparameter Tuning

GenesSearchCV

	n_gen: int

	Maximum number of generation (or loop) GenesSearchCV will run.

	initialization_fn

	Class object to generate solution candidates.

	fitness_fn

	Class object to evalute the fitness of solution candidates.

	selection_fn

	Class object to evalute the fitness of solution candidates.

	
	Can either be:
	
	
	hyperparameter_tuning.selection.RankSelection,
	
	hyperparameter_tuning.selection.RouletteWheelSelection,

	hyperparameter_tuning.selection.SteadyStateSelection,

	hyperparameter_tuning.selection.TournamentSelection,

	hyperparameter_tuning.selection.StochasticUniversalSampling,

	hyperparameter_tuning.selection.BoltzmannSelection

	mating_fn

	Class object to pair the solution candidates for reproduction.

	reproduction_fn

	Class object to reproduce child population.

	
	Can either be
	
	hyperparameter_tuning.reproduction.KPointCrossover,

	hyperparameter_tuning.reproduction.LinearCombinationCrossover,

	hyperparameter_tuning.reproduction.FitnessProportionateAverage

	mutation_fn

	Class object to mutate the child population.

	
	Can either be
	
	hyperparameter_tuning.mutation.Boundary,

	hyperparameter_tuning.mutation.Shrink

	``adaptive_population``=None

	Class object to adaptively change the mating rate of the mating_fn.

	``elitism``=None

	Class object to perform elites selection, ace comparison and elites’ traits induction.

	``adaptive_mutation``=None

	Class object to adaptively change the mutation probaility of the mutation_fn.

Initialization

Genes

	search_space: dict

	Defines the search range of the algorithm. Where keys are parameter names (strings) and values are int, float or str. Represents search spaceover parameters of the provided estimator.

	pop_size: int

	Size of the initial population.

Evaluation

FitnessFunction

	estimator: BaseEstimator

	A object of that type is instantiated for each search point. This object is assumed to implement the scikit-learn estimator api. Either estimator needs to provide a score function, or scoring must be passed.

	cv: int

	
	cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are:
	
	None, to use the default 3-fold cross validation,

	integer, to specify the number of folds in a (Stratified)KFold,

	An object to be used as a cross-validation generator.

	An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.

	scoring: str

	callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y). If None, the score method of the estimator is used.

Selection

RankSelection

	pct_survivors: int, float

	Argument that controls the number of survivors.

RouletteWheelSelection

	pct_survivors: int, float

	Argument that controls the number of survivors.

SteadyStateSelection

	elimination_ratio: float [default=.3]

	Determine how many candidates are eliminated.

TournamentSelection

	k: int [default=2]

	Argument that controls the number of participants in each tourament.

	preserve_remainders: bool [default=True]

	If True, the remaining individuals not selected for tournament will survive the selection process.

StochasticUniversalSampling

	pct_survivors: int, float

	Argument that controls the number of survivors.

BoltzmannSelection

	pct_survivors: float

	Argument that controls the number of survivors.

	T0: int, float

	Initial Temperature to calculate Boltzmann probability. A number between [5, 100].

	a: int, float

	Alpha, a constant between [0, 1].

Mating

MatingFunction

	cr_proba: int, float [default=1]

	Percentage of survived population. Determines how many couples are paired during mating.

	increst_prevention: bool [default=True]

	If True, solution candidates sharing the same parents will be paired together.

Reproduction

KPointCrossover

	k: int

	Number of times of the chromosomes being splitted.

	c_pt: int, str [default=’random’]

	If int, c_pt will be the position index of the splitting points. If str, the splitting point location where be randomly determined. If ‘random’, the splitting point will be randomly picked.

LinearCombinationCrossover
* a: float

	Alpha, a constant to determine the scale of combinations.

FitnessProportionateAverage
No parameters required to instantiate.

Mutation

Boundary
* epsilon: float [default=.15]

	Mutation rate that determines if genes will mutate or not.

Shrink
* epsilon: float [default=.15]

	Mutation rate that determines if genes will mutate or not.

	prior: str [default=’normal’]

	Determines the probability distribution of sampling.

Environment

AdaptiveReproduction

	pop_cap: int [default=None]

	Maximum population size.

AdaptiveMutation

	a: int, float [default=.2]

	Alpha, a constant to adjust the self-adaptive mutation rate.

Elitism

	pct: int, float [default=.05]

	Percentage of population being selected as elites.

Footnotes

Feature Selection

GeneticFeatureSelectionCV

	n_gen: int

	Maximum number of generation (or loop) GenesSearchCV will run.

	initialization_fn

	Class object to generate solution candidates.

	fitness_fn

	Class object to evalute the fitness of solution candidates.

	selection_fn

	Class object to evalute the fitness of solution candidates.

	
	Can either be:
	
	
	optimization.selection.RankSelection,
	
	optimization.selection.RouletteWheelSelection,

	optimization.selection.SteadyStateSelection,

	optimization.selection.TournamentSelection,

	optimization.selection.StochasticUniversalSampling,

	optimization.selection.BoltzmannSelection

	mating_fn

	Class object to pair the solution candidates for reproduction.

	reproduction_fn

	Class object to reproduce child population.

	
	Can either be
	
	optimization.reproduction.KPointCrossover,

	optimization.reproduction.LinearCombinationCrossover,

	optimization.reproduction.FitnessProportionateAverage

	mutation_fn

	Class object to mutate the child population.

	
	Can either be
	
	optimization.mutation.Boundary,

	optimization.mutation.Shrink

	``adaptive_population``=None

	Class object to adaptively change the mating rate of the mating_fn.

	``elitism``=None

	Class object to perform elites selection, ace comparison and elites’ traits induction.

	``adaptive_mutation``=None

	Class object to adaptively change the mutation probaility of the mutation_fn.

Initialization

Genes

	search_space: dict

	Defines the search range of the algorithm. Where keys are parameter names (strings) and values are int, float or str. Represents search spaceover parameters of the provided estimator.

	pop_size: int

	Size of the initial population.

Evaluation

FitnessFunction

	estimator: BaseEstimator

	A object of that type is instantiated for each search point. This object is assumed to implement the scikit-learn estimator api. Either estimator needs to provide a score function, or scoring must be passed.

	cv: int

	
	cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are:
	
	None, to use the default 3-fold cross validation,

	integer, to specify the number of folds in a (Stratified)KFold,

	An object to be used as a cross-validation generator.

	An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.

	scoring: str

	callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y). If None, the score method of the estimator is used.

Selection

RankSelection

	pct_survivors: int, float

	Argument that controls the number of survivors.

RouletteWheelSelection

	pct_survivors: int, float

	Argument that controls the number of survivors.

SteadyStateSelection

	elimination_ratio: float [default=.3]

	Determine how many candidates are eliminated.

TournamentSelection

	k: int [default=2]

	Argument that controls the number of participants in each tourament.

	preserve_remainders: bool [default=True]

	If True, the remaining individuals not selected for tournament will survive the selection process.

StochasticUniversalSampling

	pct_survivors: int, float

	Argument that controls the number of survivors.

BoltzmannSelection

	pct_survivors: float

	Argument that controls the number of survivors.

	T0: int, float

	Initial Temperature to calculate Boltzmann probability. A number between [5, 100].

	a: int, float

	Alpha, a constant between [0, 1].

Mating

MatingFunction

	cr_proba: int, float [default=1]

	Percentage of survived population. Determines how many couples are paired during mating.

	increst_prevention: bool [default=True]

	If True, solution candidates sharing the same parents will be paired together.

Reproduction

KPointCrossover

	k: int

	Number of times of the chromosomes being splitted.

	c_pt: int, str [default=’random’]

	If int, c_pt will be the position index of the splitting points. If str, the splitting point location where be randomly determined. If ‘random’, the splitting point will be randomly picked.

Mutation

BitStringMutation

	epsilon: float [default=.15]

	Mutation rate that determines if genes will mutate or not.

ExchangeMutation

	epsilon: float [default=.15]

	Mutation rate that determines if genes will mutate or not.

ShiftMutation

	epsilon: float [default=.15]

	Mutation rate that determines if genes will mutate or not.

Environment

AdaptiveReproduction

	pop_cap: int [default=None]

	Maximum population size.

AdaptiveMutation

	a: int, float [default=.2]

	Alpha, a constant to adjust the self-adaptive mutation rate.

Elitism

	pct: int, float [default=.05]

	Percentage of population being selected as elites.

Footnotes

Warnings

Population Decline Warning

	The Population Decline Warning indicates the current population size has become smaller than the previous generation, which might leads to premature convergence

Elitism Failed Warning

	The Elitism Failed Warning indicates the number of elites selected was zero due to round issue.

Low Population Warning

	The Low Population Warning indicates the initial population size might be too smaller. Which might leads to premature convergence.

Low Population Diversity Warning

	The Low Population Diversity Warning indicates most of the candidates in the current generation were reproduced by the same parents. Which might leads to premature convergence.

Footnotes

Index

 nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Quick Start

 		
 Installation

 		
 Genetic Hyperparameter Tuning CV

 		
 Genetic Feature Selection

 		
 Hyperparameter Tuning

 		
 GenesSearchCV

 		
 Initialization

 		
 Genes

 		
 Evaluation

 		
 FitnessFunction

 		
 Selection

 		
 RankSelection

 		
 RouletteWheelSelection

 		
 SteadyStateSelection

 		
 TournamentSelection

 		
 StochasticUniversalSampling

 		
 BoltzmannSelection

 		
 Mating

 		
 MatingFunction

 		
 Reproduction

 		
 KPointCrossover

 		
 Mutation

 		
 Environment

 		
 AdaptiveReproduction

 		
 AdaptiveMutation

 		
 Elitism

 		
 Feature Selection

 		
 GeneticFeatureSelectionCV

 		
 Initialization

 		
 Genes

 		
 Evaluation

 		
 FitnessFunction

 		
 Selection

 		
 RankSelection

 		
 RouletteWheelSelection

 		
 SteadyStateSelection

 		
 TournamentSelection

 		
 StochasticUniversalSampling

 		
 BoltzmannSelection

 		
 Mating

 		
 MatingFunction

 		
 Reproduction

 		
 KPointCrossover

 		
 Mutation

 		
 BitStringMutation

 		
 ExchangeMutation

 		
 ShiftMutation

 		
 Environment

 		
 AdaptiveReproduction

 		
 AdaptiveMutation

 		
 Elitism

 		
 Warnings

 		
 Population Decline Warning

 		
 Elitism Failed Warning

 		
 Low Population Warning

 		
 Low Population Diversity Warning

_static/minus.png

_static/plus.png

_images/evolearn.png
ezolearn

_static/file.png

